Inertsil ODS-3 2um Examples of High Throughput Analyses

Analytical Condition

Column: Inertsil ODS-3
Eluent: A: Acetonitrile

B: 0.1% Phosphoric Acid

A/B = 15/85

Flow Rate: 0.5mL/min., 1.0mL/min.

Column Temperature: 40C

Detector: PDA 275nm

Injection Volume: 10uL (4.6mml.D.), 5uL (3.0mml.D.)

Sample

1. Gallic acid (0.17mg/mL) 2. Vanillic acid (0.17mg/mL)

2`. Vanillin (Vanillic acid-derived impurity)

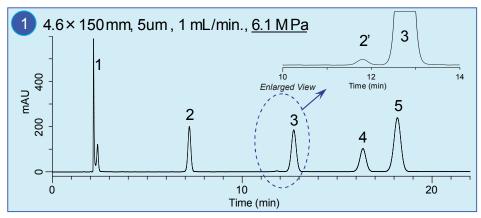
3. p-Coumaric acid (0.17mg/mL)

4. Ferulic acid (0.17mg/mL)

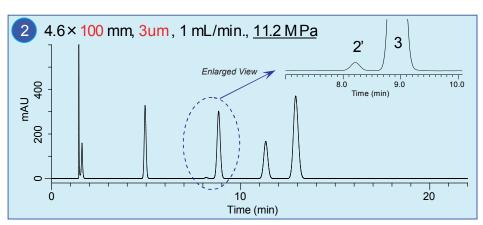
5. m-Coumaric acid (0.17mg/mL)

The following slides show High Throughput analyses using Inertsil ODS-3 3um & <u>2um</u> HPLC columns

ISO14001: Save Energy and Resources!!!


Reduce Amount of Eluent with Smaller ID Inertsil Columns!!!

Downsizing Application from a 5um to 3um


Remarks:

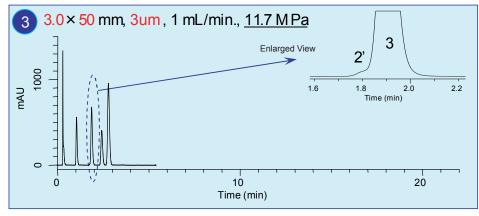
* All peaks are well separated.

Next Procedure:

- Shorten the column length = Shorter analysis time.

- Changing the packing material to a 3um = For higher resolution.

Remark.


* Obtained the same resolution with shorter analysis time.

Next Procedure:

- Shorten the column length = Shorter analysis time.

- Reducing the I.D. size = Reduced consumption of an eluent.

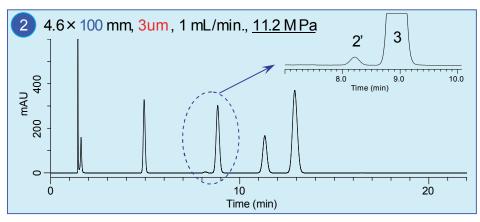
- Using the same flow rate = Shorter analysis time.

Remarks:

- * The analysis time was shortened to 1/6 compared to the initial analysis.
- * However, peak 2` and 3 were not separated.

Reference; Optimal Flow Rate:

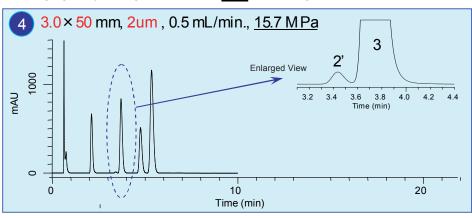
4.6mml.D. = 1.0mL/min


3.0mml.D. = 0.4mL/min

Downsizing Application from a 5um to 2um

Remark:

* All peaks are well separated.

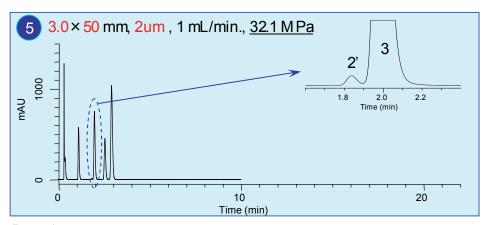

Next Procedure:

- Shorten the column length =
- Reducing the I.D. size =
- Changing the packing material to a 2um =

Shorter analysis time.

Reduced consumption of an eluent.

Higher resolution.



Remarks:

- * The analysis time was shortened to 1/3 compared to the initial analysis.
- * In addition, complete separation between peak 2` and 3 is obtained.

Next Procedure:

- Adjusting the flow rate = Higher resolution and shorter analysis time.

Remarks:

- * The analysis time was shortened to 1/6 compared to the initial analysis.
- * In addition, complete separation between peak 2` and 3 is obtained.

Reference; Optimal Flow Rate:

4.6mml.D. = 1.0mL/min

3.0mml.D. = 0.4mL/min

Results

Chromatogram	Column Dimension	Particle Size	Flow Rate	Separation between Peak 2` & 3	Analysis Time	Consumption of Eluent	Pressure
1	4.6x150mm	5um	1mL/min	Good	1	20mL	6.1MPa
2	4.6x150mm	5um	1mL/min	Good	2/3	13mL	11.2MPa
3	3.0x50mm	3um	1mL/min	Poor	1/6	3.5mL	11.7MPa
4	3.0x50mm	2um	0.5mL/min	Good	1/3	3.5mL	15.7MPa
5	3.0x50mm	2um	1mL/min	Good	1/6	3.5mL	32.1MPa

Remark:

^{*} The analysis time and eluent consumption are both reduced successfully at the same time using Inertsil ODS-3 <u>2um.</u>